NASA TECHNICAL NOTE

NASA TN D-2899

NASA TN D-2899

N65-28635	
(ACCESSION NUMBER)	(THRU)
(PAGES)	(CODE)
	17
(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

GPO PRICE \$	·- ···
CFST/ OFS PRICE(S) \$	3.00
•	
Hard copy (HC)	
Microfiche (MF)	.50

FATIGUE OF FOUR STAINLESS STEELS AND THREE TITANIUM ALLOYS BEFORE AND AFTER EXPOSURE TO 550° F (561° K) UP TO 8800 HOURS

by Walter Illg and Claude B. Castle
Langley Research Center
Langley Station, Hampton, Va.

FATIGUE OF FOUR STAINLESS STEELS AND THREE TITANIUM ALLOYS BEFORE AND AFTER EXPOSURE

TO $550^{\rm O}$ F ($561^{\rm O}$ K) UP TO 8800 HOURS

By Walter Illg and Claude B. Castle

Langley Research Center Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FATIGUE OF FOUR STAINLESS STEELS AND

THREE TITANIUM ALLOYS BEFORE AND AFTER EXPOSURE

TO 550° F (561° K) UP TO 8800 HOURS

By Walter Illg and Claude B. Castle Langley Research Center

SUMMARY

28635

Fatigue and tensile sheet specimens of four steels and three titanium alloys were tested before and after exposure to 5500 F (5610 K) for periods up to 1 year. None of the seven materials exhibited a serious degradation in fatigue life in any of the four specimen configurations used. However, in two cases (Ti-4Al-3Mo-1V spot-welded, Ti-8Al-1Mo-1V edge-notched), a slight but steady life-reduction trend was observed. The static joint efficiencies, prior to exposure, of both spot-welded and fusion-welded specimens were higher for titanium alloys than for steels.

INTRODUCTION

Structural materials located near leading edges of a supersonic transport may reach temperatures as high as 550° F (561° K) due to aerodynamic heating during flight at Mach 3. Since this condition will exist during most of the flying hours throughout the life of the aircraft, the heat environment may affect the long-time load-carrying capacity of the materials of construction. Therefore, an investigation is underway to determine effects of exposure to a 550° F (561° K) environment on fatigue strengths of a number of stainless steel and titanium alloys in sheet form. Exposure periods will run up to 30,000 hours. This report presents the results of static and fatigue tests before and after soaking periods up to 1 year (8800 hours). Aircraft construction methods were simulated with various types of specimens including notched and welded configurations.

SYMBOLS

The units used for the physical quantities defined in this paper are given both in the U.S. Customary Units and in the International System of Units, (SI). Factors relating the two systems are given in reference 1.

е	permanent tensile elongation in given gage length, percent
K_{T}	theoretical stress concentration factor
N	life of fatigue specimen after exposure to 550° F (561° K), cycles
Ni	life of fatigue specimen before exposure, cycles
Sf	fatigue limit, stress value below which fatigue failure will not occur in 10^7 cycles, ksi (MN/m^2)
Smax	maximum nominal stress during a fatigue load cycle, ksi (MN/m^2)
S _{mean}	mean stress during a fatigue load cycle, ksi (MN/m2)
S _u	static tensile ultimate strength, ksi (MN/m ²)
Sy	static tensile yield strength, 0.2-percent offset, ksi (MN/m^2)
ρ	density, $lb/in.^3 (kg/m^3)$

SPECIMENS

Four stainless steels and three titanium alloys were included in this investigation. The steels used were PH 15-7 Mo in the TH 1050 condition, AM 350 in both the double-aged condition (designated AM 350 DA) and the 20-percent cold reduced plus tempered condition (designated AM 350 CRT), and AISI 301 in the full-hard condition (50-percent cold reduction) (designated AISI 301 CR). The titanium alloys used were Ti-4Al-3Mo-1V solution treated and aged, Ti-6Al-4V annealed, and Ti-8Al-1Mo-1V single-annealed. Chemical composition and heat-treating details are given in the appendix.

Three types of fatigue specimens were used to represent widely differing types of stress raisers found in aircraft construction and these types are shown in figure 1. Unnotched specimen tests were also conducted to reveal changes in fatigue strength of the basic material. The edge-notched specimens had a stress concentration factor of 4. This configuration of specimens has been used in a variety of studies of fatigue behavior in aluminum alloys because it has been suggested (ref. 2) that its fatigue behavior is similar to that of contemporary fabricated structures. The relative fatigue behavior among structures made of stainless steels, titanium alloys, and aluminum alloys may be ascertained by comparing the results of the present investigation with data for aluminum alloys. Welded joints were investigated in the spot-weld and fusion-weld form. Symmetrical butt joints were chosen to minimize bending stresses under axial

load. A single row of spot-welds was used for simplicity. The number of spot-welds was designed to obtain maximum strength without short-circuiting the current through adjacent welds. The result was seven spot-welds for the steel specimens and five for the titanium alloy specimens. No filler rod was used for the fusion-welded specimens. Details of fabrication and handling procedures may be found in the appendix.

The static tensile specimens are shown in figure 2. The welded tensile specimen configurations include both transverse and longitudinal welds as recommended in reference 3. The transverse type is useful for determining the strength of welded joints and the longitudinal type is sensitive to a loss in ductility due to welding.

PROCEDURE

Approximately 100 fatigue specimens were fabricated from each material and of each configuration. A number of specimens were tested to establish a preexposure S-N curve at room temperature using mean stresses of 40 ksi (276 MN/m²) and 25 ksi (173 MN/m²) for steels and titanium alloys, respectively. These mean stresses were considered to be reasonably representative of operating 1g stresses in a supersonic transport. The ratios of mean stress to ultimate strength are between 1/5 and 1/6 or roughly equivalent to the ratios used in contemporary aluminum aircraft.

Sixty fatigue specimens of each type and material were hung on racks in a resistance-heated electric furnace having forced-air circulation. A single standard tensile specimen was included with every 10 fatigue specimens to provide a check on possible deterioration of static strength. The temperature of the furnace was maintained at 550° F (561° K) \pm 10° F (5.5° K) and was monitored by a thermocouple welded to a sample specimen.

Specimens were removed from the oven after periods of 2200 hours, 4400 hours, and 8800 hours. Six fusion-weld specimens and five of each of the other configurations were removed each time along with one tensile specimen with each group. Five fatigue specimens were then tested at room temperature at a particular stress level chosen from the preexposure S-N curves. The sixth fusion-weld specimen was tested statically to detect possible changes in tensile strength of the welded specimen due to exposure.

Constant-amplitude fatigue tests were conducted in subresonant-type axial-load fatigue machines which are fully described in reference 4 and are shown in figures 3 and 4. Load was sensed by a weigh-bar in series with the specimen and grips. A wire strain-gage bridge cemented to the weigh-bar supplied a load signal to an oscilloscope which was used to monitor the cyclic loading. Operating frequency was 1800 cycles per minute (30 Hz). The machines were calibrated periodically and a loading accuracy of ±10 pounds (±44 N) was maintained.

RESULTS AND DISCUSSION

Preexposure Static Tests

The tensile properties of standard tensile specimens are given in table I and are within ranges normally expected for these materials. The effects of fusion welding on these properties are presented in table II. For comparison purposes, table II includes the preexposure tensile strength and elongations from table I.

All the steels suffered large losses in tensile ultimate and yield strengths in the as-welded condition. However, when PH 15-7 Mo and AM 350 DA were heat treated after welding instead of before, the strength losses were considerably less. All three titanium alloys were little affected strengthwise by fusion welding. The elongation values of the longitudinally welded specimens, measured after fracture, were smaller than those of virgin specimens for all three titanium alloys and for AM 350 20 percent CRT.

The static strengths of the fatigue specimens are given in table III. These data are compared with those found for standard tensile specimens from table I. The strengths of the unnotched specimens were within 5 percent of the value from standard tensile specimens except for the AM 350 DA which showed an increase of 8 percent. A notch-strengthening effect was found for the $K_T = 4$ specimens except for the AISI 301 where there was a weakening effect and for Ti-4Al-3Mo-1V and AM 350 CRT where no significant effect was noted.

The results of the static tests of spot-welded joints showed that the titanium alloys had higher joint efficiencies than the steels. The joint efficiencies (joint strength divided by material strength) of the titanium alloys with five spot-welds per joint varied from 96 to 99 percent. Those for steels with seven spot-welds per joint varied from 86 to 92 percent. Almost all spot-welded specimens failed through the material immediately adjacent to the heat-affected zones. The exceptions were three Ti-6Al-4V tests and one of two Ti-4Al-3Mo-1V tests wherein failure took place away from the welds.

The joint efficiencies of titanium alloys were also impressive in the fusion-welded configuration. Joint efficiency varied from 101 to 107 percent, whereas for most steels it ranged between 60 and 69 percent. In the case of the two heat-treated steels, their joint efficiencies were nearly 100 percent when the specimens were heat treated after fusion welding instead of before.

Desirable welding characteristics of material for aircraft use would include little or no postweld treatment and little change in strength and elongation values due to welding. Of the materials tested in this program, only the three titanium alloys approached these requirements. Of these three, the welding characteristics of Ti-8Al-1Mo-1V were superior because the Ti-6Al-4V required a postweld moderate temperature stress relief to forestall weld cracking and the Ti-4Al-3Mo-1V exhibited larger reduction in ductility than did Ti-8Al-1Mo-1V.

Preexposure Fatigue Tests

The results of the preexposure fatigue tests are listed in table IV and are presented in figure 5 as S-N curves. The maximum stress in a cycle is plotted against the number of cycles to failure. In all cases except one, the curves displayed a real fatigue limit (a definite tendency to become horizontal before reaching 10^7 cycles). The exception was Ti-6Al-4V in the unnotched configuration (fig. 5(e)) in which case the S-N curve had a negative slope up to 10^7 cycles.

An unusually high degree of scatter was observed in the results for AISI 301 unnotched specimens (fig. 5(d)). Photomicrographs (fig. 6) were taken of this material in a search for possible causes for the scatter. It can be seen that stringer-like inclusions are present and occasionally very large ones are evident up to 0.006 inch (0.015 cm) in size. It is possible that these inclusions may be responsible for early fatigue failures. Such extreme scatter did not occur for the edge-notched and spot-welded specimens probably because the effects of the high stress concentration factor at the notch or weld masked the effects of inclusions.

The fatigue-limit—density ratios of the various materials and types of specimens are compared in figure 7. Densities are given in the appendix. This normalization puts the stainless steels and titanium alloys on a comparable footing since the mean stresses are, fortuitously, in approximately the same ratio as the densities. The results of the tests of unnotched and edge-notched specimens show that the ratios for the stainless steels and titanium alloys are generally equivalent in those configurations. However, in the case of welded joints, both spot-welded and fusion-welded, the titanium alloys had higher ratios. The ratios for currently used aluminum alloys (2024-T3 and 7075-T6) in the edge-notched configuration (ref. 5) are roughly equivalent to those found in this investigation. Figure 7 also shows the ratios for the spot-welded joint to be roughly equivalent to those for the edge-notched specimens.

A measure of the effect of fusion welding on the fatigue limit can be obtained by determining the percent of the fatigue limit for unnotched specimens that was retained by the welded specimens. (See fig. 7.) The percentages for the titanium alloys are higher (83 to 97 percent) than those for the steels (70 to 82 percent). The fatigue limit for Ti-6Al-4V appears to be almost insensitive to fusion welding.

If the materials are serially ranked for each kind of specimen on the basis of fatigue-limit—density ratio S_f/ρ and the rank numbers then added, the results would be a rough overall ranking as has been done in the following table:

Material		Spe	cimen type		Total	Overall
Macerial	$K_{\mathrm{T}} = 1$	$K_{\mathrm{T}} = 4$	Spot-weld	Fusion-weld	TOTAL	rank
PH 15-7 Mo AM 350 CRT AM 350 DA AISI 301 Ti-6A1-4V Ti-4A1-3M0-1V Ti-8A1-1M0-1V	6 4 2 7 3 5	2 5 1 7 4 6 3	5 6 4 7 3 1 2	6 5 4 7 1 3 2	19 20 11 28 11 15	5627241

In the ranking of the fusion-welded specimens, those steel specimens which were welded before heat treating were omitted. This ranking should be regarded cautiously since it was drawn from very limited data and from only one type of test.

Postexposure Static Tests

The effect of exposure on the static tensile strength was examined in a cursory manner by use of one standard tensile specimen for each exposure time. A more complete investigation of these effects is reported in reference 6. Table I and figure 8 present the results from the present investigation. No important changes in strength are evident although it may be pointed out that PH 15-7 Mo and AISI 301 showed a consistent rise in tensile ultimate and yield strengths up to 8800 hours.

The results of the static tests of fusion-welded fatigue specimens are given in table V. The only significant change occurred in AM 350 CRT where the strength decreased from 139 ksi to 103 ksi (958 to 710 MN/m²) in 4400 hours.

Postexposure Fatigue Tests

The results of the fatigue tests of exposed specimens are given in table VI and are plotted in figure 8. The effect of exposure on fatigue life is expressed as a ratio of the as-exposed life to the preexposure life at one particular maximum stress level. The test stress levels were chosen from the faired S-N curves in figure 5 so that preexposure life was between 50,000 and 500,000 cycles. The logarithmic average of the exposure test results was used to compare with the preexposure lives as obtained from the faired S-N curves.

Although the data are somewhat erratic, one important conclusion may be drawn; that is, no catastrophic degradation of fatigue life has been found after exposure to 550° F (561° K). It must be noted, however, that these specimens were not under stress while exposed to elevated temperature. It is known that the addition of stress to a heated material can accelerate metallurgical changes and thereby affect mechanical properties (ref. 7).

The most extreme improvement occurred for the unnotched specimens of Ti-8Al-1Mo-1V. (See fig. 8.) The fatigue-life ratio increased from 1 to 13 in the interval between 4400 hours and 8800 hours. Since half of those specimens tested at 8800 hours failed at normal lifetimes, the sudden rise should probably be ascribed to scatter in the test results, especially since the results for edge-notched specimens did not indicate a similar trend.

A number of points fell at life ratios below 1. However, in most cases, the next exposure interval indicated an increase; thus, the fluctuations could be ascribed to test scatter. But in some cases, such as Ti-4Al-3Mo-1V spotwelded and Ti-8Al-1Mo-1V edge-notched, the life ratio declined steadily up to 8800 hours. Subsequent tests after longer periods of exposure should contribute additional evidence.

CONCLUDING REMARKS

Fatigue and tensile specimens of four stainless steels and three titanium alloys have been exposed to 550° F (561° K) for periods up to 8800 hours. At intervals, the specimens were tested under axial load at room temperature and their fatigue lives and static strengths before and after exposure were determined.

It was found that the preexposure fatigue limits of spot-welded specimens were approximately equal to those of edge-notched specimens with a stress concentration factor of 4. The fatigue limits of fusion-welded specimens were slightly lower than those of unnotched specimens. On the basis of fatigue-limit—density ratios, the stainless steels and titanium alloys were generally equivalent. The titanium alloys, however, had somewhat higher ratios for spot-welded and fusion-welded joints than did the stainless steels.

The efficiencies of spot-welded joints (ratio of strength of joint to that of the virgin sheet material) was substantially higher for titanium alloys than for stainless steels.

The exposure to 550° F (561° K) did not seriously degrade the fatigue life for any of the materials tested during the indicated exposure periods. A slight but steady life-reduction trend was found for Ti-4Al-3Mo-1V spot-welded specimens and Ti-8Al-1Mo-1V edge-notched specimens. The static strengths showed no significant changes due to exposure.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., March 4, 1965.

FABRICATION AND TREATMENT OF SPECIMENS

Four stainless steel and three titanium alloys were included in this investigation. The chemical composition and densities of these sheet materials obtained from the producers are given in the following tables:

(a) Titanium alloys

Alloy	Che	mical	composi	· .	ercen	t (on	wei	ght b	asis)	Density,
	С	Fe	Fe N_2 H_2 Al V Cr Mo Ti $1b/in.^3$ $(g/$						1b/in. / (g/m ²)	
Ti-8Al-lMo-lV	0.034	0.09	0.013	0.005	7.8	1.1		1.1	Balance	0.156 (4.32)
Ti-6Al-4V	.026	.15	.013	.011	6.1	4.0			Balance	.161 (4.46)
Ti-4Al-3Mo-1V	.015	.16	.011	.010	4.4	1.1		3.0	Balance	.163 (4.51)

^{*}Average for different heats.

(b) Stainless steels

Alloy			Chemica	l compo	sition	, perce	nt (on	weigh	t basi	s)		Density,
ALLOY	С	Mn	P	ន	Si	Cr	Ni	Со	Мо	Al	Fe	lb/in.3(g/m3)
AM 350	0.080	0.76	0.019	0.012	0.30	16.80	4.15		2.80		Balance	0.286 (7.92)
PH 15-7 Mo	.063	•55	.020	.011	· 1414	14.96	7.23		2.15	1.14	Balance	.277 (7.67)
AISI 301	.089	.15	.023	.017	.47	17.30	7.70	0.05	.16		Balance	.287 (7.95)

Specimen Fabrication

Unnotched specimens. The $7\frac{1}{2}$ - inch (19-cm) radius of the unnotched specimens (fig. 1) was cut in a lathe by mounting the blanks on the headstock in stacks of 6 to 12 at one time. Machining speed was 14 revolutions per minute or 11 inches (28 cm) per second. Each of the final two passes removed 0.001 inch (25 μ m) of material producing a finish of 64 μ in. (1.6 μ m) root mean square. Although machining techniques were chosen to minimize burrs, they could not be eliminated entirely. Therefore, the corners in the fatigue critical areas were chamfered to remove the burred material. The beveling tool was a block of wood having about a $7\frac{1}{2}$ - inch (19-cm) radius with number 600 emery paper fixed to the circumference. The bevel was produced by hand with light longitudinal strokes. The resulting bevel face was approximately 0.004 inch (0.10 mm) wide at a 45° angle to the surface of the specimen.

Notched specimens. The notch radii of the notched specimens (fig. 1) were formed by drilling successively larger holes. The final three drill sizes were 0.110 inch, 0.113 inch, and 0.116 inch (2.80, 2.87, and 2.94 mm) diameter. The first two drills were guided by a bushing, but the last drill was free. The blanks were drilled in stacks of 10 against a thick plate of cold-rolled steel. Only new drills were used and each was discarded after drilling the stack once. Drilling speed was 925 revolutions per minute and 11/64 inch per minute (73 $\mu\text{m/s}$) feed with the drills lubricated continuously. The notches were completed by slotting from the edge with a 3/32-inch (2.38 mm) wide milling tool. Burrs produced by the drilling operation were removed by chamfering the edges of the hole at a 45° angle. The beveling tool was a cone-shaped piece of rubber-abrasive composite chucked in a drill press which ran at 3000 revolutions per minute. The procedure required the specimens to be lightly touched against the cone to produce a chamfer 0.004 inch (0.10 mm) wide.

Spot-welded specimens. The four components of the spot-welded specimens (fig. 1) were machined to size prior to welding. Edge finish was $64~\mu in$. (1.6 μm) root mean square and the corners were broken with a fine file. Welding parameters and tests were applied to check the weld quality.

Fusion-welded specimens. The two components of the fusion-welded specimens (fig. 1) were premachined to a rectangular shape. They were then clamped in position in a tungsten inert gas automatic welding machine and welded without filler rod. The radius was machined in the same manner as for the unnotched specimen except that spacers were placed between the fusion-welded specimens away from the weld to compensate for weld bulge while stacked for machining. The weld bulge was left as welded.

Handling and Treatment of Specimens

General requirements. Sheets were covered with protective paper prior to shearing. Specimens were not scribed, scratched, or marred in anyway. Specimens were separated by paper or racked in designated shipping containers. Handling of specimens was at all times conducive to the retention of a scratch-free and chemically clean surface. The special treatment given each material is outlined in the following table:

Material	Cleaning method	Grit-blast oxidation removal	Heat treatment
PH 15-7 Mo AISI 301 AM 350 CRT AM 350 DA Ti-6A1-4V Ti-4A1-3M0-1V Ti-8A1-1M0-1V	A B B C C	Yes No No Yes No Yes No	I None None II III IV None

Cleaning methods. The specimens were cleaned both before heat treatment and immediately before insertion into oven at 550° F (561° K). The three different cleaning processes used are as follows:

- Method A: (1) Remove markings such as manufacturer's stamp, crayon, etc., using acetone or alcohol and cloth.
 - (2) Vapor degrease using trichlorethylene vapor.
 - (3) Hand scrub using fiber brush and a detergent.
 - (4) Hand scrub and rinse in hot running water.
 - (5) Rinse in cold running water.
 - (6) Check for uniform wetting of specimen surface.
 - (7) Wipe dry using clean cloth or paper towels.
- Method B: (1) Remove markings such as manufacturer's stamps, crayon, etc., using acetone or alcohol and cloth.
 - (2) Vapor degrease using trichlorethylene vapor.
 - (3) Rinse in hot water.
 - (4) Immerse in nitric acid, 20 percent by volume, for approximately 5 minutes.
 - (5) Wash in hot water.
 - (6) Rinse in cold water.
 - (7) Check for uniform wetting of specimen surface.
 - (8) Wipe dry using clean cloth or paper towels.
- Method C: (1) Immerse in alkaline cleaner for 10 minutes. Use at 180° F (355° K) to 200° F (366° K).
 - (2) Rinse in hot water 2 to 3 minutes.
 - (3) Immerse in nitric acid, 20 percent by volume, for 30 seconds.
 - (4) Rinse in hot water, agitated.
 - (5) Rinse in cold water, agitated, continuous supply.
 - (6) Check for uniform wetting of specimen surface.
 - (7) Wipe dry using clean cloth or paper towels.

- <u>Heat treatments</u>. The procedures used for the heat treatments of the various materials are as follows:
- PH 15-7 Mo: Heat treat the material PH 15-7 Mo to the TH 1050 condition as follows:
 - (1) Heat to 1400° F \pm 25° F (1033° K \pm 14° K) in argon atmosphere. Hold for 90 minutes.
 - (2) Cool to 60° F + 0° , -10° F (289° K + 0° , -5° K) within 1 hour. Hold for 30 minutes.
 - (3) Heat to 1050° F \pm 10° F $(837^{\circ}$ K \pm 5° K) in argon atmosphere. Hold for 90 minutes. Air cool to room temperature.
- AM 350: Heat treat the material AM 350 to the double-aged condition as follows:
 - (1) Heat to 1375° F \pm 25° F (1022° K \pm 14° K) in argon atmosphere. Hold for 3 hours.
 - (2) Air cool to 80° F + 0° , -10° F (300° K + 0° , -5° K).
 - (3) Heat to 850° F \pm 25° F (727° K \pm 14° K) in argon atmosphere. Hold for 3 hours. Air cool to room temperature.
- Ti-6Al-4V: Fusion-welded specimens of the material Ti-6Al-4V were stress-relieved within 72 hours after welding as follows:
 - (1) Heat to 1150° F ± 25° F (894° K ± 14° K) in argon atmosphere for 1 hour.
 - (2) Air cool to room temperature.
- Ti-4Al-3Mo-lV: Heat treat the material Ti-4Al-3Mo-lV as follows:
 - (1) Heat to 1050° F (837° K) in an argon atmosphere. Hold for 4 hours.
 - (2) Air cool to room temperature.

Welding procedures.- Prior to welding the spot-weld and fusion-weld components, oxidation was removed by a grit-blast process from the PH 15-7 Mo, AM 350 AM 350 DA, and Ti-4Al-3Mo-1V materials. Prior to welding fatigue specimens, one sample specimen was welded, sectioned, and etched to check penetration and nugget size. Spot-weld shear test qualifying specimens were made according to military specifications MIL-W-6858-B (ref. 8) at the beginning and end of a material run and also after 20 fatigue specimens. A 50 kVA 30 combination seam and spot-welder was used for all spot-welds. It has an electrode face diameter of 5/16 inch (0.67 cm) and a tip radius of 3 inches (7.62 cm). The spot-weld parameters for the various materials are given in the following table:

Material	Welds per row	Penetration, percent	Nugget diameter, in. (mm)
PH 15-7 Mo AM 350 CRT AM 350 DA AISI 301 Ti-6A1-4V Ti-4A1-3M0-1V Ti-8A1-1M0-1V	7	70	0.13 (3.3)
	7	80	.20 (5.1)
	7	80	.18 (4.6)
	7	7 5	.16 (4.1)
	5	80	.24 (6.1)
	5	80	.23 (5.8)
	5	80	.19 (4.8)

The fusion-welds were made without a filler rod. A 200-ampere welding machine was used; its electrode was made of tungsten, 2-percent thoria and had a diameter of 0.040 inch (1.0 mm). The fusion-weld parameters for the various materials are given in the following table:

	Shield in	ert gas flow r	ate, cu ft/hr	
Material	Тор (*)	Bottom	Trailing (**)	Current, A
PH 15-7 Mo	30	*20	0	19
AM 350 CRT	50	***15		24
AM 350 DA	50	***15		24
AISI 301	50	***15	0	24
Ti-6A1-4V	30	**5	20	44
Ti-4Al-3Mo-1V	30	**5	30	46
Ti-8Al-1Mo-1V	30	**30	30	42

^{*75-}percent helium, 25-percent argon.

^{**}Argon.

^{***}Helium.

REFERENCES

- 1. Mechtly, E. A.: The International System of Units Physical Constants and Conversion Factors. NASA SP-7012, 1964.
- 2. Spaulding, E. H.: Design for Fatigue, SAE Trans., vol. 62, 1954, pp. 104-116.
- 3. Randall, M. D.; Monroe, R. E.; and Rieppel, P. J.: Methods of Evaluating Welded Joints. DMIC Rept. 165, Battelle Mem. Inst., Dec. 28, 1961.
- 4. Grover, H. J.; Hyler, W. S.; Kuhn, Paul; Landers, Charles B.; and Howell, F. M.: Axial-Load Fatigue Properties of 24S-T and 75S-T Aluminum Alloy as Determined in Several Laboratories. NACA Rept. 1190, 1954. (Supersedes NACA TN 2928.)
- 5. Illg, Walter: Fatigue Tests on Notched and Unnotched Sheet Specimens of 2024-T3 and 7075-T6 Aluminum Alloys and of SAE 4130 Steel With Special Consideration of the Life Range From 2 to 10,000 Cycles. NACA TN 3866, 1956.
- 6. Heimerl, George J.; Baucom, Robert M.; Manning, Charles R., Jr.; and Braski, David N.: Stability of Four Titanium-Alloy and Four Stainless-Steel Sheet Materials After Exposures up to 22 000 Hours at 550° F (561° K). NASA TN D-2607, 1965.
- 7. Raring, Richard H.; Freeman, J. W.; Schultz, J. W.; and Voorhees, H. R.: Progress Report of the NASA Special Committee on Materials Research for Supersonic Transports. NASA TN D-1798, 1963.
- 8. Anon.: Welding: Aluminum, Magnesium Non-Hardening Steels or Alloys, and Titanium, Spot, Seam and Stitch. Mil. Specification MIL-W-6858B, Mar. 22, 1962.

TABLE I.- ROOM-TEMPERATURE TENSILE PROPERTIES FOR TENSILE SPECIMENS, LONGITUDINAL GRAIN DIRECTION

Each value for 0 exposure time represents four tests. For all other exposure times only one test is represented.

Material	Exposure time,		S _u ,		^S y, (*)	e, percent in 2 in. (5.08 cm)
	hr	ksi	MN/m^2	ksi	mn/m²	
PH 15-7 Mo TH 1050	0 2200 4400 8800	201 205 208 210	1390 1420 1440 1450	196 200 202 205	1350 1380 1390 1420	7 7 7 7
AM 350 20 percent CRT	0 2200 4400 8800	201 192 194	1390 1330 1340	185 187 189	1280 1290 1310	19 20 20
AM 350 double aged	0 2200 4400 8800	190 192 191	1310 1330 1320	158 158 157	1090 1090 1080	13 13 13
AISI 301 50 percent CR	0 2200 4400 8800	216 231 230	1500 1600 1590	203 199 201	1400 1380 1390	4 3 3
Ti-6Al-4V annealed	0 2200 4400 8800	149 158 159	1030 1090 1100	142 149 148	983 1030 1020	12 11 10
Ti-4Al-3Mo-1V aged	0 2200 4400 8800	142 142 142 142	983 983 983 983	122 122 122 121	846 846 846 838	10 10 9 10
Ti-8A1-1Mo-1V single annealed	0 2200 4400 8800	157 157 156 157	1080 1080 1080 1080	145 144 146 146	1010 1000 1010 1010	16 16 17 15

^{*0.2-}percent offset.

TABLE II. - ROOM-TEMPERATURE TENSILE PROPERTIES OF FUSION-WELDED SPECIMENS, GRAIN PARALLEL TO ROLLING DIRECTION

Four tests per value

Material	Direction of weld	S _u , ksi	(mn/m²)	S _y , ksi (**		e, per in 2 in.	cent (5.08 cm)
	or were	Welded	Virgin	Welded	Virgin	Welded	Virgin
PH 15-7 Mo*	Transverse	120 (828)	201 (1390)	105 (724)	196 (1350)	3	7
TH 1050	Longitudinal	175 (1210)		144 (993)		12	
PH 15-7 Mo**	Transverse	197 (1370)	201 (1390)	185 (1280)	196 (1350)	2	7
TH 1050	Longitudinal	203 (1400)		194 (1340)		10	
AM 350	Transverse	132 (910)	201 (1390)	100 (690)	185 (1280)	14	19
20 percent CRT	Longitudinal	163 (1120)		106 (731)		9	
AM 350*	Transverse	133 (917)	190 (1310)	103 (710)	158 (1090)	14	13
double aged	Longitudinal	170 (1170)		113 (780)		19	
AM 350**	Transverse	180 (1240)	190 (1310)	150 (1030)	158 (1090)		13
double aged	Longitudinal	178 (1230)		144 (993)	:		
AISI 301	Transverse	133 (917)	216 (1500)	70 (483)	203 (1400)	7	4
50 percent CR	Longitudinal	170 (1170)		120 (828)		10	
Ti-6Al-4V	Transverse	150 (1030)	149 (1030)	144 (993)	142 (983)	12	12
annealed	Longitudinal	162 (1120)		157 (1080)		7	
Ti-4Al-3Mo-1V	Transverse	143 (986)	142 (983)	125 (862)	122 (846)	8	10
aged	Longitudinal	156 (1080)		129 (890)		5	
Ti-8Al-1Mo-1V	Transverse	147 (1010)	157 (1080)	135 (930)	145 (1010)	14	16
single annealed	Longitudinal	156 (1080)		106 (731)		10	

^{*}Welded after heat treatment.
**Welded before heat treatment.
***0.2-percent offset.

TABLE III.- ROOM-TEMPERATURE TENSILE STRENGTH OF UNEXPOSED FATIGUE SPECIMENS

Two tests per value

			Tensile st	Tensile strength, ksi (MN/m^2) for	MN/m2) for -			Ä	Percent of	Su for -	
Material	Suy				Fusion-weld	-weld				Fusion-weld	-weld
	1	Кη = 1	$K_{\Gamma} = h$	Spot-weld	Before heat treatment	After heat treatment	K _T = 1	K _T = ¹ μ	Spot-weld	Before heat treatment	After heat treatment
PH 15-7 Mo	201	206 (1420)	(1480)	175 (1190)	139 (960)	208 (1440)	102	106	%	69	104
AM 350 CRT	201	195 (1350)	201 (1390)	184 (1270)	139 (960)		76	100	95	69	
AM 350 DA	8	207 (1430)	218 (1500)	(0711) 691	125 (862)	187 (1290)	108	411	89	99	86
AISI 301	216	206 (1420)	198 (1370)	186 (1280)	130 (896)		95	91	%	09	
Ti-6A1-4V	149	152 (1050)	163 (1120)	a148 (1020)	160 (1100)		102	109	66	701	
T1-4A1-3M0-1V	142	141 (973)		141 (975) b141 (975)	146 (1010)		66	66	66	103	
T1-8A1-1M0-1V	157	156 (1080)	167 (1150)	151 (1040)	159 (1100)		66	106	%	101	

 $^{\rm a}{\rm Three}$ specimens tested; all three failed away from welds. $^{\rm b}{\rm One}$ of two specimens tested failed away from welds.

TABLE IV.- RESULTS OF PREEXPOSURE FATIGUE TESTS

(a) PH 15-7 Mo steel; condition TH 1050

(I)	S	max	N,	Sheet	s	max	N,
Sheet	ksi	MN/m ²	kilocycles	Silee (ksi	MN/m²	kilocýcles
К _Т =	1; S _{mean}	= 40 ksi (276	5 MN/m ²) 32	Fusion v	veld, weld = 40 ksi (ed after he 276 MN/m ²)	eat treatment; - Concluded
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	160 160 140 140 140 120 120 120 123 113 113 108 108	1104 1104 966 966 966 968 828 828 828 780 780 780 745	41 44 75 84 99 119 73 119 178 158 710 2 873 3 516	14 14 14 14 14 14 14 14 14 14 14 14 14 1	90 90 90 90 90 90 90 87 87 87 85 85	621 621 621 621 621 621 621 621 600 600 600 587 587 566 545	120 129 130 170 171 184 328 355 127 215 369 309 1 065
	1	= 40 ksi (276		1 ¹ 4 1 ² 4	79 78	545 538	8 140 >10 000
8 6 4 4 8	66.5 65 62 62 62	459 449 428 428 428	27 54 41 45 78	Fusion w	eld; welde	ed prior to +0 ksi (276	heat treatment; MN/m ²)
2 8 8 8	62 58 58 57	428 400 400 393	94 12 ¹ 4 >10 000 >10 000	12 12 12 12 12	115 115 115 110 110	794 794 794 759 759	26 32 70 20
Spoty	veld; S _{mear}	1 = 40 ksi (2	76 MN/m²)	12	110	759 759	57 89
10 10 10 6 10 10 10 10	75 75 75 75 75 55 55 55 50	518 518 518 518 518 580 380 380 345 345	19 20 21 27 242 250 252 810 2 586	12 12 12 12 12 12 12 12 12 12	105 105 105 105 100 100 100 100 100	725 725 725 725 725 690 690 690 690 690 690	93 47 52 61 261 80 85 97 129 220
Fusion		ied after hea) ksi (276 MN		12 12	95 95	656 656	337 728
14 14 14 14 14 14 14 14 14 14 14 14	105 105 105 102 102 100 100 100 95 95 95 90 90	725 725 725 704 704 690 690 656 656 656 621 621	20 22 33 21 72 36 42 49 44 50 60 24 68	12 12 12 12 12 12 12 12 12 12 12 12 12 1	92 92 92 90 90 90 90 90 87 87 87 85 85	635 635 621 621 621 621 621 621 600 600 600 587 587 587	206 257 314 58 108 198 223 574 >10 000 843 1 352 >10 000 6 828 >10 000 >10 000

TABLE IV.- RESULTS OF PREEXPOSURE FATIGUE TESTS - Continued

(b) AM 350 20 percent CRT steel

Sheet	S	max	N,	Sheet	s	max	N,
Bheet	ksi	MN/m ²	kilocycles	Sileet	ksi	MN/m²	kilocycles
K _T =	1; S _{mean}	= 40 ksi (2	76 MN/m²)	Spot-w	eld; S _{mea}	n = 40 ksi	(276 MN/m²)
KT =	1; Smean 160 160 160 155 155 155 150 150 140 140 140 130 125 125 125 125 125 120 120 120 115 115	= 40 ks1 (2 1104 1104 1104 11070 1070 1070 1075 1035 966 966 966 897 897 897 863 863 863 863 863 863 863 863	76 MN/m²) 20 26 26 40 43 43 46 60 68 57 80 96 147 170 188 92 220 572 691 1 372 427 587 1 197 272 453 684	Spot-w 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	eld; Smea 75 75 75 75 70 65 65 65 66 60 60 60 55 55 5	n = 40 ks1 518 518 518 518 518 518 518 483 483 449 449 449 414 414 414 414 580 580 580 580 580 580 580 580 580 580	24 26 30 39 43 56 87 88 88 91 98 191 240 249 250 429 510 610 643 844 830 1 296 >300 1 402 1 590 >10 000
4 4 1 1 4 1	112 112 112 110 110 110	773 773 773 759 759 759	211 708 1 019 1 048 >10 000 >10 000	Fusion-	115 115 115	331 an = 40 ksi 794 794 794	9 152 (276 MN/m²) 16 17 20
KT =	85 85 85 85 86 80 80 72 72 65 65 65 66 60 60 58 58 57 57 57 55 55 55 52 52 52 52	= 40 ksi (2 587 587 587 552 552 552 497 497 449 449 449 414 414 414 400 400 393 393 393 380 380 380 380 359 359 359	76 MN/m²) 11 11 11 16 16 16 22 25 25 28 38 41 49 53 62 67 67 94 71 87 >10 000 84 1 245 1 792 110 174 1 026 1 862 4 002 >10 000	777777777777777777777777777777777777777	110 110 105 105 105 100 100 100 100 100	759 759 759 759 725 725 725 690 690 690 690 696 656 656 655 635 621 621 621 600 600 600 600 587 587 572	21 32 33 52 59 59 131 141 163 180 204 239 261 677 141 1 764 2 895 1 315 3 220 243 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000

TABLE IV.- RESULTS OF PREEXPOSURE FATIGUE TESTS - Continued

(c) AM 350 double-aged steel

				*		 	
Sheet	S _r ksi	max MN/m²	N, kilocycles	Sheet	S _r ksi	max MN/m²	N, kilocycles
K _T =		= 40 ksi (27	76 MN/m²)	K _T =		= 40 ksi (2	76 MN/m²)
	160	1104	13		Co	oncluded	
3 3 1 1 3 1 3 1 3 3 3 3 3 3 3 3 3 3 3 3	160 160 150 150 150 140 140 140 140 140	1104 1104 1035 1035 1035 966 966 966 966 966 966 966	15 17 26 27 37 37 37 45 45 74 96	3 3 1 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3	555 82 860 660 850 55	449 449 428 428 424 414 414 459 545	47 54 87 71 85 9 141 66 >10 000 >10 000 >10 000 >10 000 >10 000
3	135 135	932 932 897	116 259	Spot-w	eld; S _{mea}	n = 40 ksi (276 MN/m²)
3 3 3 3 3 3 3 3 3 3 1 3 3 1 3 3 1 1 3 3 1 1 1 3 1	130 130 130 125 125 125 125 125 120 120 120 120 115	897 897 897 863 863 863 863 863 828 828 828 828 794	95 170 177 354 565 612 1 398 2 925 >10 000 164 165 >10 000 3 571 >10 000	666666666666666666666666666666666666666	75 75 70 70 70 70 65 65 66 60 60 60	518 518 518 483 483 483 449 449 414 414 414 393	18 24 21 34 38 43 47 71 83 86 111 159 176 231 255
KT =	4; Smean	= 40 ksi (2°	76 MN/m²)	6	57 57	393 393	273 289
5 5 5 5 5 5 5 5 5 1 1 1 1	80 80 80 76 76 72 72 72 68 68	552 552 552 554 524 524 497 497 469 469	9 10 14 18 20 25 38 22 25 49	666666666666666666666666666666666666666	57 55 55 55 55 55 52 52 52 51 51	393 380 380 380 380 366 359 359 359 352 345	326 289 330 960 >10 000 5 336 3 489 4 554 8 089 1 942 2 112 >10 000

TABLE IV.- RESULTS OF PREEXPOSURE FATIGUE TESTS - Continued

(c) AM 350 double-aged steel - Concluded

Sheet	Sı	max	N,	Ght	s	max	N,
Sneet	ksi	MN/m ²	kilocycles	Sheet	ksi	MN/m ²	kilocycles
	veld; welde mean = 40	ed after hea	at treatment; MN/m ²)	Fusion-w	eld; welde Smean = 4	d prior to O ksi (276	heat treatment; MN/m2)
809868608668668888888888888888888888888	125 125 120 120 120 120 121 115 110 110 110 105 105 105 100 100 10	863 863 863 828 828 828 794 759 759 725 725 725 725 725 725 725 690 690 690 669 669 669 669 656 656 656 656 656 656	5 8 8 9 11 12 12 13 25 20 33 47 69 70 154 159 180 188 275 75 246 251 278 306 383 700 705 994 1 293 1 590 >10 000 1 501 >10 000	777777777777777777777777777777777777777	140 140 140 140 130 130 130 130 125 120 120 120 120 115 110 110 105 100 100 100 97 97 96 92	966 966 966 966 897 897 897 863 863 828 828 828 794 794 759 759 725 725 725 690 690 669 669 669 669	11 25 26 29 27 30 32 34 11.7 45 49 62 89 107 154 202 135 141 266 487 787 2 823 5624 >10 000 >10 000

TABLE IV.- RESULTS OF PREEXPOSURE FATURE TESTS - Continued

(d) AISI 301, 50 percent CR steel

	Sı	Tax	N,		S	na.x	N,
Sheet	ksi	MN/m²	kilocycles	Sheet	ksi	mn/m²	kilocycles
K _T =	1; S _{mean}	= 40 ksi (2	76 MN/m²)	Spot-w	eld; S _{mea}	n = 40 ksi	(276 MN/m²)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	140 140 140 140 140 140 150 150 150 120 120 120 120 120 120 120 120 120 12	966 966 966 966 966 966 966 967 897 897 828 828 828 828 828 828 828 828 759 759 759 759 759 759 759 759 759 759	18 21 23 36 37 51 32 33 37 1 741 47 51 63 68 73 81 87 167 425 841 >10 000 72 228 1 964 >8 046 >10 000 3 693 75 106 176 210 1 720 6 770 >10 000	6	87	600	18 19 19 30 32 36 54 71 76 125 110 126 145 137 167 186 332 256 257 294 290 387 >10 000 387 >10 000 >10 000 >10 000
KT = 2 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 2 2 2 1 2	70 70 70 65 65 66 60 60 60 60 57 57 57 57 55 55 55 52 52 52 50 50 48 48	= 40 ksi (2' 483 483 483 449 449 414 414 414 393 393 393 393 393 393 393 393 393 39	76 MN/m²) 17 18 21 20 28 30 43 59 >10 000 62 103 7 529 >10 000 >10 000 >10 000 >10 82 271 425 9 879 506 630 5 265 >10 000 2 018 7 904 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000	666666666666666666666666666666666666666	87 87 85 85 83 83 82 82 82 80 80 80 80 78 75	600 600 587 587 587 573 573 576 566 566 532 532 532 532 538 518 518 518	66 115 39 48 103 309 312 573 86 108 9 991 >10 000 114 198 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000

TABLE IV.- RESULTS OF PREEXPOSURE FATIGUE TESTS - Continued

(e) Ti-6Al-4V annealed titanium

C1 t	s	max	N,		S	max	N,
Sheet	ksi	MN/m ²	kilocýcles	Sheet	ksi	Man/m²	kilocycles
K _T =	1; S _{mean}	= 25 ksi (1	73 MN/m²)	Spot-w	eld; S _{mea}	n = 25 ksi	(173 MN/m ²)
1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	120 120 120 110 110 100 100 100 96 95 95 95 95 96 98 85 85 85 85 86 80 80 80 76 76 76	828 828 828 828 759 759 690 690 690 662 656 656 656 656 656 657 587 587 587 552 552 552 552 552 524 524 524	16 22 28 14 52 28 14 52 54 46 94 145 117 78 321 691 615 902 62 64 600 847 1 058 342 901 1 925 2 116 2 091 2 176 5 087 2 910	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	48 48 48 49 49 40 40 40 40 40 40 40 40 40 40	331 331 331 311 311 311 311 290 276 276 276 276 276 276 276 276 276 275 255 255 255 255 242 242 242 242 242 24	21 28 28 32 35 51 58 55 49 72 86 132 133 222 99 124 175 178 334 415 592 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000
2	72 72	497	6 526	-	weld; S _{me}	an = 25 ks	i (173 MN/m²)
1 1 1 1 1 1	72 70 70 68 68 68 68	497 483 483 469 469 469 = 25 ksi (1	6 526 9 081 2 648 2 695 4 345 5 360 7 049	3 3 3 3 3 3 3 3 3 3 3 3 3	90 90 90 85 85 86 80	621 621 621 587 587 587 552	19 24 32 18 22 23 26 36 66
1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2	60 55 55 55 50 50 50 50 50 50 50 50 50 50	414 380 380 380 345 345 311 311 276 276 276 276 276 276 276 276 276 276	7 12 12 12 16 17 21 26 13 24 31 57 57 112 152 315 54 59 83 3 409 60 85 1 870 76 >10 000 1 846 2 105 2 704 >10 000 206 8 448 8 8075 >10 000 >10 000 >10 000	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	80 75 75 70 70 70 70 68 68 65 65 65 65 63	552 518 518 518 483 483 469 469 449 449 449 449 449 449	66 555 80 98 41 58 107 277 537 503 1 453 3 293 112 1 026 7 327 >10 000 404 1 061

TABLE IV.- RESULTS OF PREEXPOSURE FATIGUE TESTS - Continued $\mbox{(f)} \quad \mbox{Ti} \ \ ^4\mbox{Al-}\ \mbox{2Mo-lV} \ \ \mbox{aged titanium}$

Sheet	S	max	N,	Sheet	s	max	N,
5.,000	ksi	MN/m ²	kilocycles	Difee 0	ksi	MN/m ²	kilocycles
K _T =	1; S _{mean}	= 25 ksi (173 MN/m²)	Spot-w	eld; S _{mea}	n = 25 ksi	(173 MN/m²)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110 110 100 100 100 90 90 84 84 82 82 82 80 75 75 70 70 70 68	759 759 759 690 690 621 621 580 580 566 566 552 518 483 483 483	기격 가격 열 입 기가 의 원 & 보고 첫 56 78 9 1 년 55 76 80 8 1 경 56 80 8 1 8 20 12	335553333355555535555	48 48 5 5 5 5 5 42 2 40 40 0 40 88 88 88 58 58 58 58 58 58 58 58 58 58	331, 331, 311, 311, 311, 311, 311, 290, 290, 276, 276, 276, 276, 276, 276, 262, 262	27 31 36 34 40 49 51 70 82 97 84 108 155 167 222 181 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000
1 1 1	68 68 68	469 469 469	193 316	Fusion-	weld; S _{me}	an = 25 ksi	(173 MN/m²)
1 1 2 1	66 66 66 65 63 60	455 455 455 449 435 414	>10 000 201 213 >10 000 >10 000 >10 000 >10 000	6 6 5 5 5	75 75 75 70 70 70 65 65 65 62 62	518 518 518 483 483 483 449	16 17 19 26 30 39 27
	1	= 25 ksi (]	L73 MN/m²)	5	65 65	449 449	29 56
222212222222221222122222	45 42 40 40 40 37 37 35 35 35 35 32 32 32 32 32 31 31 31	311 290 290 290 276 276 276 255 255 242 242 242 228 228 221 221 221 221 221 221 221 22	10 13 16 18 19 23 28 31 32 44 51 63 79 82 145 182 199 201 >10 000 10 000 176 >10 000 >10 000 >10 000	666555665666656666655565656	62 62 62 60 60 60 58 55 55 55 55 53 50 50	428 428 428 428 414 414 400 400 380 380 380 366 366 345 345	29 56 32 36 91 169 47 78 80 >10 000 48 73 61 66 >10 000 2 032 >10 000 >10 000 >10 000

TABLE IV.- RESULTS OF PREEXPOSURE FATIGUE TESTS - Concluded

(g) Ti-8Al-1Mo-1V annealed titanium

Chast	s	max	N,		S	max	N,
Sheet	ksi	MN/m²	kilocycles	Sheet	ksi	MN/m ²	kilocycles
K _T =	1; Smean	= 25 ksi (173 MN/m²)	Spot-w	eld; S _{mea}	n = 25 ksi	(173 MN/m²)
888888888888888888888888888888888888888	110 110 110 100 100 100 100 95 95 95 90 90 90 90 85 85 85 85 85 86 80 80 80 80 80 80 80 80 80 80 80 80 80	759 759 759 690 690 690 656 656 656 656 621 621 621 587 587 587 587 587 552 552 552 552 552 551 531 531 518	21 22 28 19 23 57 24 27 45 64 38 59 80 89 127 46 71 97 97 97 9420 124 138 505 1 1522 2 960 4 435 262 319 2 804	333333366666533336633336666	48 48 45 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5	331 331 331 331 311 311 311 311 297 297 297 297 297 297 296 276 276 276 262 262 262 262 248 242 242 242 242 242 242 242 242 24	24 25 32 81 32 58 80 109 46 47 57 97 139 73 105 226 107 155 196 351 439 185 289 432 659 7 987 8 864 >10 000 593 >10 000
888888888888888888888888888888888888888	75 72 72 72 70 70 70 70 66 66 66	497 497 483 483 483 483 483 455 455	3 275 >10 000 1 840 7 921 9 955 1 595 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000		90 90 90 85 85 85 80 80 80	621 621 621 587 587 587 552 552 552 538 538	25 26 27 24 32 33 28 29 38 55 80
KT =	4; Smean	= 25 ksi (173 MN/m²)	5	76 76 76	524 524	31 104
777777777777777777777777777777777777777	50 50 50 47 47 45 45 43 44 40 40 40 37 37 37 33 33 32 30 30	345 345 345 324 324 311 311 297 297 297 290 276 276 276 276 276 275 255 255 242 228 228 221 221 221 207	15 19 26 15 20 21 24 58 221 24 71 444 75 562 429 453 459 635 642 110 569 695 1 167 1 691 1 796 3 571 9 252 >10 000 >10 000 >10 000	555555555555555555555555555555555555555	76 75 75 77 77 72 72 72 72 70 70 88 88 564 44 42 62 62 66 66 65 88 58	524 518 518 518 511 511 497 497 497 483 469 469 442 428 428 414 400 400	1 374 49 74 96 173 262 54 62 75 620 664 893 2 212 91 1 693 2 801 1 905 5 760 2 896 5 066 5 985 6 5 985 7 6 000 6 5 985 6 5 985 6 5 985 6 5 985 6 5 985 7 6 000 6 5 985 8 6 5 985 8 6 5 985 8 6 6 5 985 8 7 6 000 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

TABLE V.- STATIC STRENGTH OF FUSION-WELDED FATIGUE SPECIMENS AFTER EXPOSURE TO 550° F (561° K)

One specimen per period

Material	$S_{ m u}$, ksi, after exposure to 550° F (561° K) for -					
Material	0 hr	2200 hr	4400 hr			
PH 15-7 Mo* PH 15-7 Mo** AM 350 CRT AM 350 DA* AM 350 DA** AISI 301 Ti-6A1-4V Ti-4A1-3M0-1V Ti-8A1-1M0-1V	139 208 139 125 187 130 160 146 159	140 205 132 131 182 122 162 148 160	148 208 103 131 184 123 163 150			

^{*}Welded after heat treatment.

^{**}Welded before heat treatment.

TABLE VI.- RESULTS OF EXPOSURE TO 550° F (561° K) FATIGUE TESTS

[Specimens which did not fail were excluded from calculation of geometric mean]

(a) PH 15-7 Mo; $S_{mean} = 40 \text{ ksi } (276 \text{ MN/m}^2)$

O hours exposed	2200 h	ours exposed	4400 h	ours exposed	8800 h	ours exposed
N _i , kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles
		$K_{\rm T}$ = 1; $S_{\rm max}$ =	= 113 ksi (7	80 MN/m²)		
400	3 3 3 3 3	240 338 348 459 787	7 7 7 7	106 159 208 258 310	7 7 7 7	261 825 908 1 203 1 322
		400 *		195*		792*
		$K_{\mathrm{T}} = 4$; S_{max}	c = 62 ksi (428 mn/ m ²)		
70	99999	47 49 66 67 69	6 6 6 6	36 45 47 58 155	7 7 7 7	43 46 54 54 74
		59 *		59 *		53 *
		Spotweld; Sma	1x = 67 ksi	(462 MN/m ²)		
50	10 10 10 10	46 48 51 64 72	10 10 10 10 10	59 59 68 69 98	10 10 10 10	74 79 101 107 111
		55 *	-	71*		94*
	Fusion-weld	l (welded after h	neat treatme	nt); Smax = 90 k	si (621 MN/	m ²)
150	24 24 24 24 24	173 174 196 239 260				
		205*				
	Fusion-weld	(welded before h	neat treatme	nt); S _{max} = 100	ksi (690 MN	1/m ²)
	12 12 12 12 12	7 ¹ 4 86 90 100 180	12 12 12 12 12	5 ⁴ 58 63 133 263		
		100 *		93*		

^{*}Geometric mean.

TABLE VI.- RESULTS OF EXPOSURE TO 550° F (561° K) FATIGUE TESTS - Continued

(b) AM 350 (20 percent CRT); $S_{mean} = 40 \text{ ksi } (276 \text{ MN/m}^2)$

O hours exposed	2200 ho	urs exposed	4400 ho	urs exposed	8800 hc	ours exposed				
N _i , kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles				
		$K_T = 1$; $S_{max} =$	130 ksi (8	97 MN/m²)						
170	1 4 4 1	42 71 149 229 286	1 1 1 4	93 126 261 278 364	1 1 1 4	53 117 139 200				
		124*		198*		115*				
$K_{\rm T} = 4$; $S_{\rm ma.x} = 65 \text{ ksi } (449 \text{ MN/m}^2)$										
40	4 1 1	38 41 44 48 7 690	1 1 1 1	36 43 45 50 6 629	1 4 1 4 4	32 37 38 39 43				
		43*	L	43*		38 *				
		Spotweld; Smax	= 55 ksi (3	80 mn/m²)						
500	3 3 3 3 3	579 652 695 1 233 1 795	3 3 3 3 3	687 803 884 1 312 1 547	3 3 3 3 3	620 690 817 1 161 1 666				
		945*		1 002*		1 000*				
	F	usion-weld; Smax	= 100 ksi	(690 MN/m²)	1	·				
140	7 7 7 7 7	72 90 111 118 155	7 7 7 7 7	65 69 85 87 90						
		106*		83*						

^{*}Geometric mean.

TABLE VI.- RESULTS OF EXPOSURE TO 550° F (561° K) FATIGUE TESTS - Continued

(c) AM 350 (double aged); $S_{mean} = 40 \text{ ksi } (276 \text{ MN/m}^2)$

0 hours exposed	2200 h	ours exposed	4400 h	ours exposed	8800 h	ours exposed
N _i , kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles
		$K_T = 1$; $S_{max} =$	140 ksi (9	66 mn/m²)		
60	1 3 3 3 3	54 61 78 98 102	3 3 3 1 3	52 55 56 57 80	1 3 1 1 3	28 46 61 67 89
		76*		60 *		54*
		K _T = 4; S _{max} =	65 ksi (44	9 MN/m ²)		
50	1 3 3 1 3	22 33 39 63 132	3 3 3 3	35 36 38 50 88	3 3 3 1	22 25 26 30 33
		47*		55*		26 *
		Spot-weld; Smax	= 57 ksi (393 MN/m²)		
300	6 6 6 6	227 263 306 322	6 6 6 6	217 262 277 329 392	66666	249 298 329 339 375
		27 7*		295*		315*
Fusio	on-weld (wel	ded after heat t	reatment);	$S_{\text{max}} = 100 \text{ ksi } (6)$	690 MN/m²)	
130	8 8 8 8	40 49 64 81 117	8 8 8 8	30 36 43 47 55		
		65*		41*		
Fusio	on-weld (wel	ded before heat	treatment);	S _{max} = 115 ksi	(794 MN/m²)	
120	7 7 7 7 7	81 96 116 196 228	7 7 7 7 7	61 72 85 125 129		
		143*		90*		

^{*}Geometric mean.

TABLE VI.- RESULTS OF EXPOSURE TO 550° F (561° K) FATTGUE TESTS - Continued

(d) AISI 301 (50 percent CR); $S_{mean} = 40 \text{ ksi } (276 \text{ MN/m}^2)$

O hours exposed	2200 hours exposed		4400 hours exposed		8800 hours exposed	
N _i , kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles
		$K_{T} = 1$; $S_{max} =$	= 120 ksi (8	28 MN/m²)		
80	2 2 1 1	114 282 >8 853 >12 600 >14 540	2 2 1 1	113 114 201 >10 650	2 2 1 2 1	50 55 71 113 >10 200
		660 *		139*		58 *
		$K_T = 4$; $S_{ma.x} =$	= 60 ksi (41	4 MN/m ²)		•
55	1 2 1 1 2	37 38 48 66 >15 000	1 1 1 2 2	34 52 62 >10 230 >10 446	1 1 2 1 2	38 46 53 2 036 6 828
		46 *		48 *		264*
		Spot-weld; Smax	c = 57 ksi (393 MN/m ²)	· -	
120	7 7 7 7 7	115 120 126 128 129	7 7 7 7	106 125 134 135 155	7 7 7 7	108 113 125 130 134
		123*		131*	<u> </u>	123*
	100	Fusion-weld; Smg	_{ax} = 82 ksi	(566 MN/m²)		
300	6 6 6 6	61 93 129 143	6 6 6 6	68 92 115 134 141		
		101*		106*		

^{*}Geometric mean.

(e) Ti-6Al-4V; $S_{mean} = 25 \text{ ksi } (173 \text{ MN/m}^2)$

O hours exposed	2200 hours exposed		4400 hours exposed		8800 hours exposed	
N ₁ , kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles
		$K_T = 1$; $S_{max} = 1$	100 ksi (69	0 MN/m ²)		
130	2 1 1 2 1	78 91 105 132 534	2 2 1 1	73 89 128 182 1 119	2 1 1	68 79 240 1 110
		139*		176*		194*
		$K_T = 4$; $S_{max} = 4$	40 ksi (276	MN/m²)		
50	2 1 2 1 1	33 35 41 50 51	1 2 1 2	33 38 40 45 1 255	1 2 2 1	36 36 47 48 67
		41 *		78*		46*
		Spot-weld; Smax	= 40 ksi (2	76 MN/m²)		
90	7 7 7 7 7	127 165 167 189 229	7 7 7 7 7	155 160 220 225 261	7 7 7 7 7	88 123 125 157 189
		172*		187*		134*
	F	usion-weld; S _{max}	= 75 ksi (518 MN/ m ²)		
70	3 3 3 3 3	53 56 83 89 133	3 3 3 3 3	43 51 53 107 228 78*		

^{*}Geometric mean.

(f) Ti-4Al-3Mo-1V; $S_{mean} = 25 \text{ ksi } (173 \text{ MN/m}^2)$

O hours exposed	2200 hours exposed		4400 hours exposed		8800 hours exposed			
N _i , kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles		
$K_T = 1$; $S_{max} = 70 \text{ ksi } (483 \text{ MN/m}^2)$								
120	1 1 1	42 119 246	1 1 1 1	70 202 >10 072 >12 715 >14 643	2 2 2 2 2	120 141 194 >10 414 >15 092		
		107*		120*		147*		
		$K_{T} = 4$; S_{max}	= 33 ksi (22	28 MN/m ²)		-		
100	2 2 2 2 2 2	69 74 89 92 104	2 2 2 2 2 2	67 92 110 186 563	1 1 1 1	112 117 530 >10 000 >12 800		
		85*		148*		191*		
		Spot-weld; Sm	ax = 40 ksi ((276 MN/m²)				
120	5 5 3 3	82 90 97 116 133	5 3 3 3	60 75 85 103 103	5 5 5 3 3	52 59 61 62 7 ¹ 4		
		103*		83*		61*		
Fusion-weld; $S_{max} = 62 \text{ ksi } (428 \text{ MN/m}^2)$								
50	6 6 5 5 5	40 41 43 50 52 45*	5 6 6 6 5	30 34 56 65 75 51*				

^{*} Geometric mean.

(g) Ti-8Al-lMo-lV; $S_{mean} = 25 \text{ ksi } (173 \text{ MN/m}^2)$

O hours exposed	2200 hours exposed		4400 hours exposed		8800 hours exposed	
N _i , kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles	Sheet	N, kilocycles
		$K_T = 1$; $S_{max} =$	90 ksi (62	n mn/m²)		
70	8 8 8 8	49 78 90 92 361	8 8 8 8	59 60 94 151 216	8 8 8 8	86 155 1 268 4 401
_		103*		102*		933 *
		$K_{\rm T}$ = 4; $S_{\rm max}$ =	40 ksi (27	6 MN/m ²)		
200	7 7 7 7 7	44 46 48 48 56	7 7 7 7 7	33 40 59 493 59	7 7 7 7 7	35 35 56 60 43
		48 *		7 ¹ 4*		45*
		Spot-weld; Smax	= 38 ksi (262 MN/m²)		
200	6 3 6 3 3	121 141 186 290 575	3 6 3 3 6	139 153 204 208 217	6 6 3 3 3	140 168 419 503 559
		221*		181*		314*
		Fusion-weld; Sma	x = 75 ksi	(518 MN/m ²)		·
100	5 5 5 5 5	42 67 89 156 323	5 5 5 5 5	47 74 115 116 156		
		135*		113*		

^{*}Geometric mean.

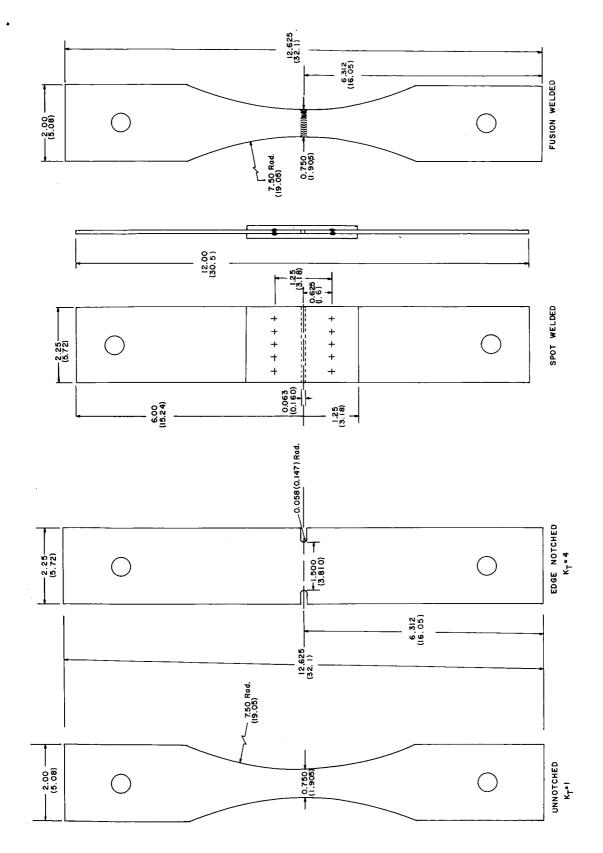


Figure 1.- Fatigue specimens. All dimensions are in inches (centimeters).

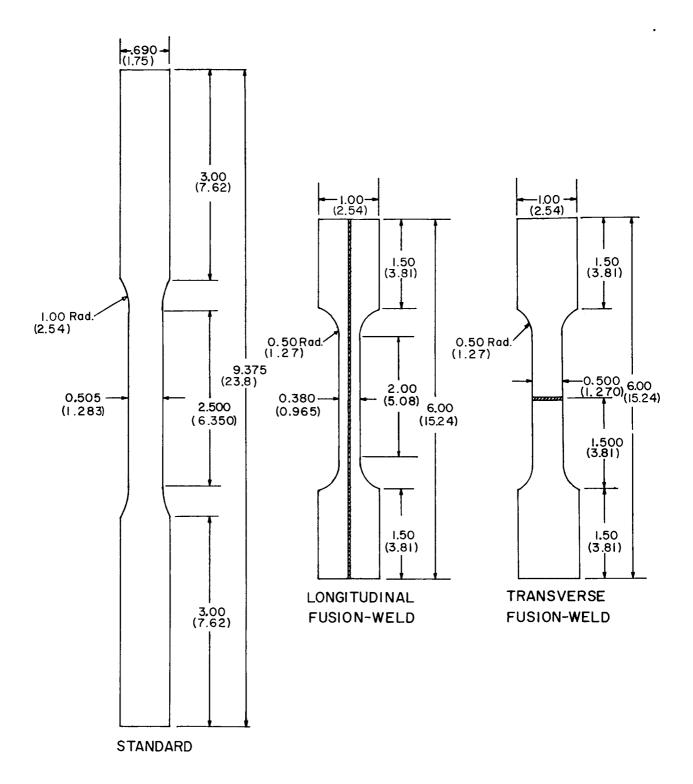


Figure 2.- Tensile specimens. All dimensions are in inches (centimeters).

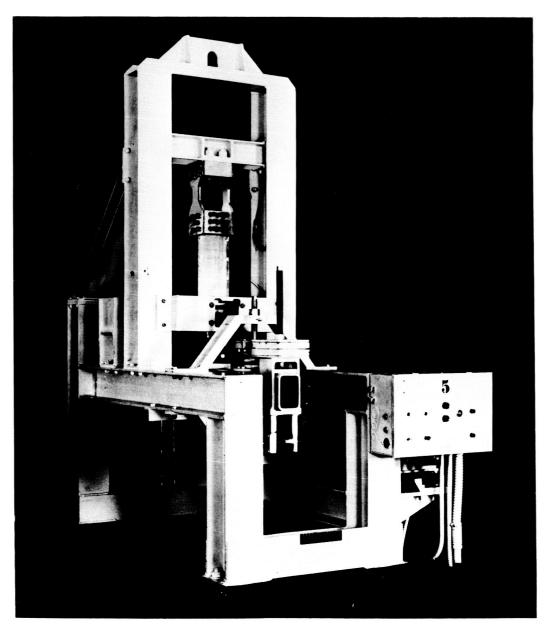


Figure 3.- Subresonant axial-load fatigue testing machine.

L**-**77926

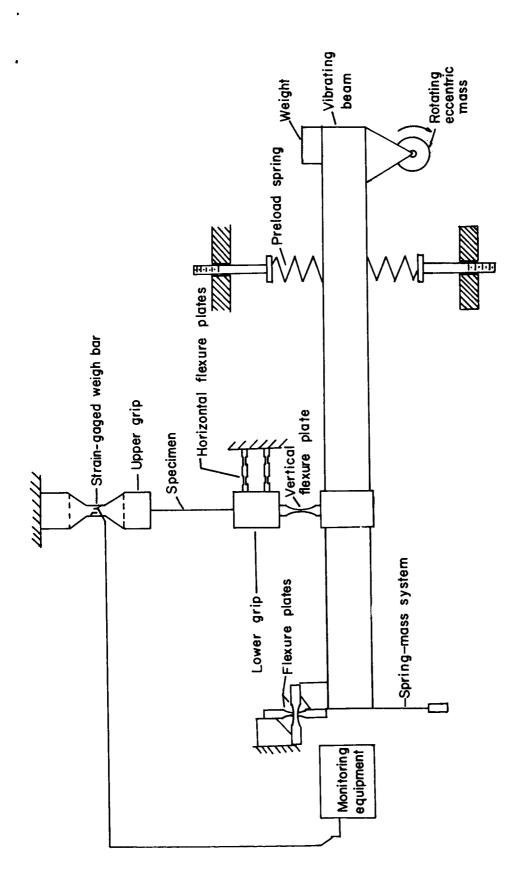
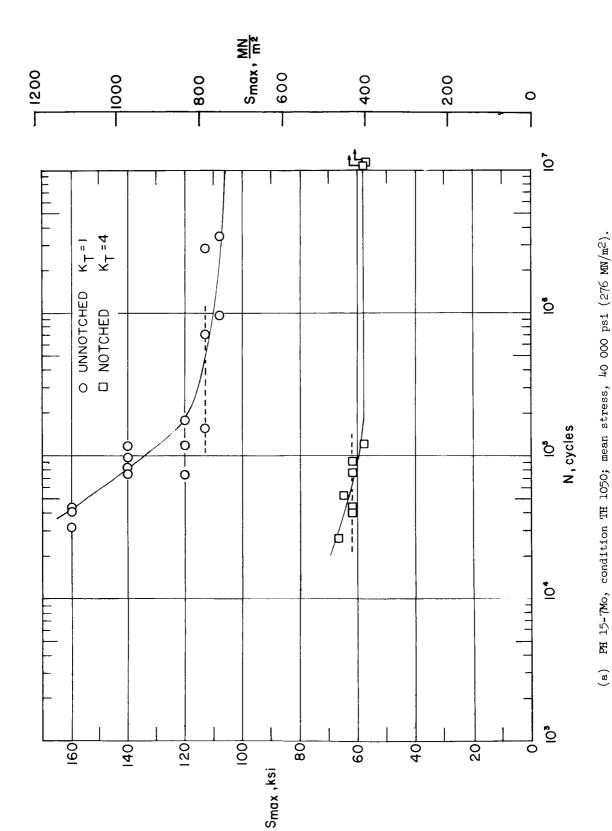
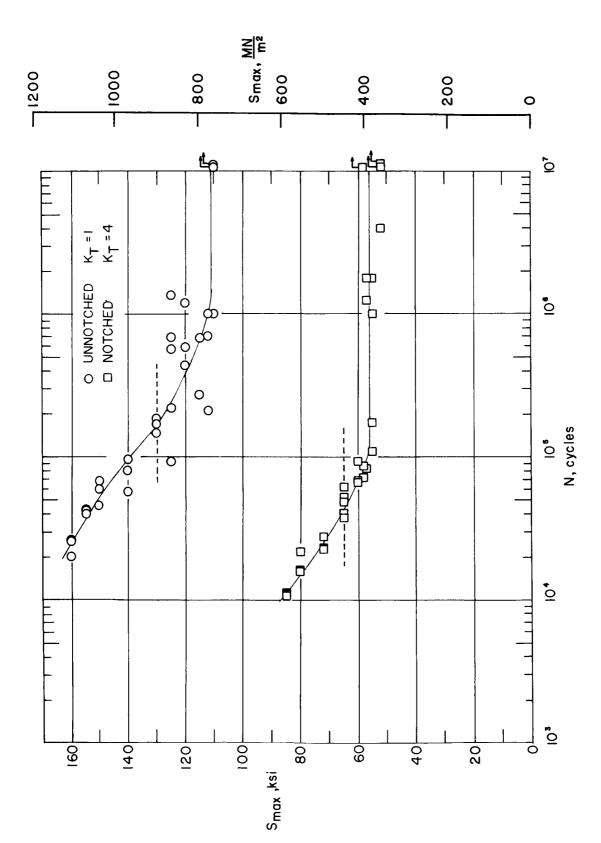
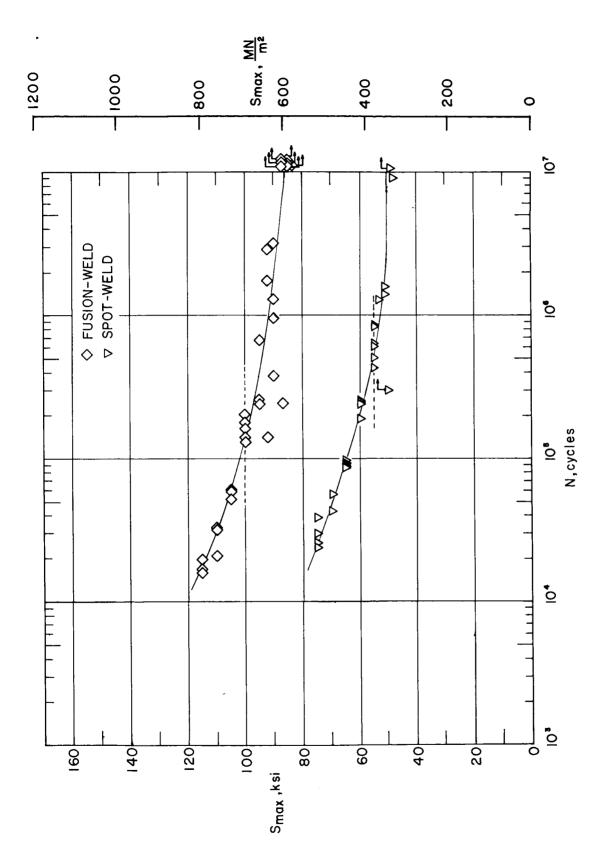
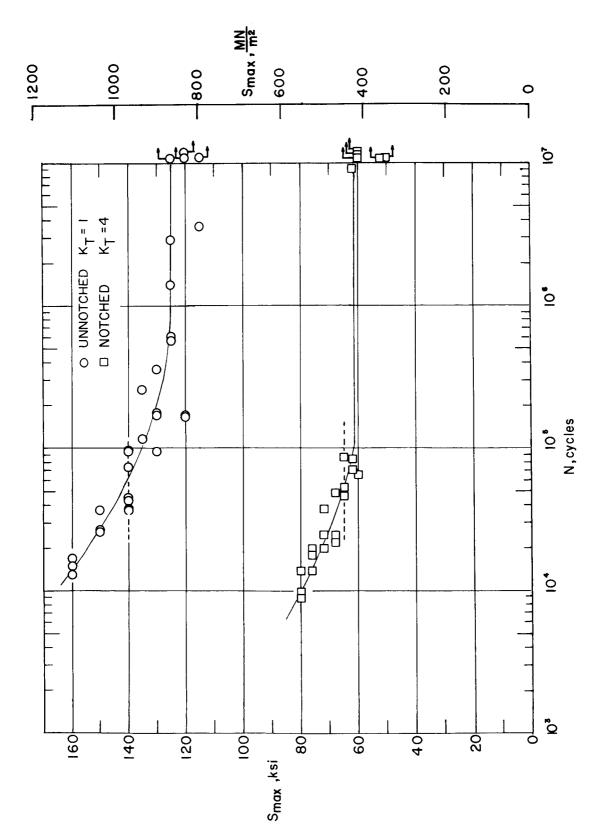
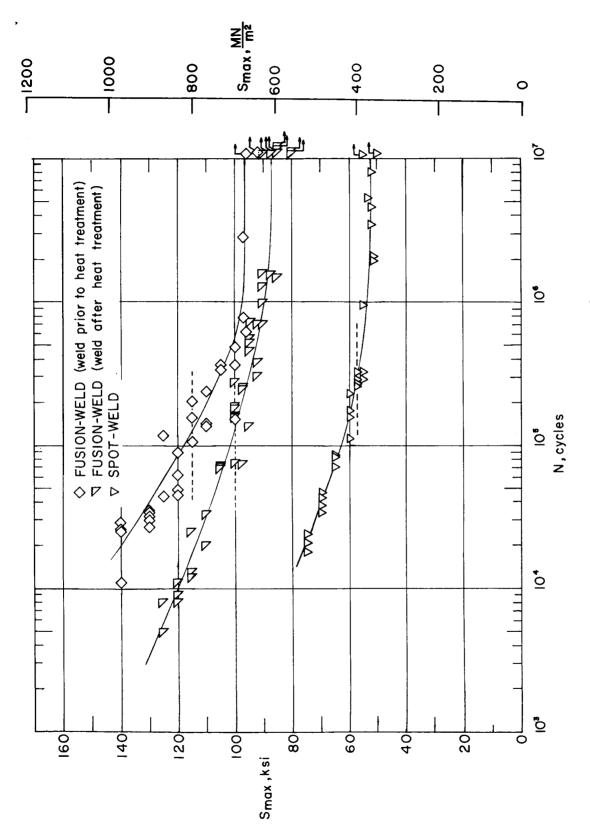


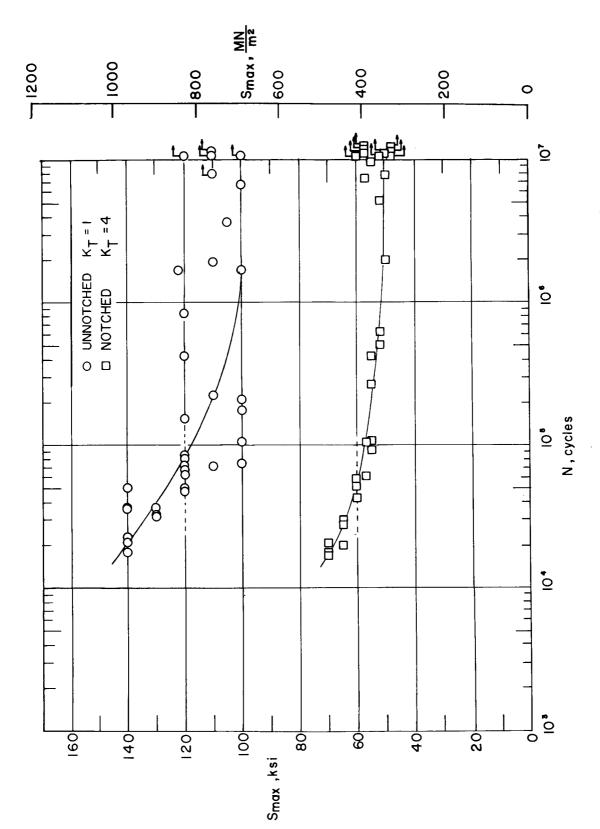
Figure 4.- Schematic of subresonant axial-load fatigue testing machine.

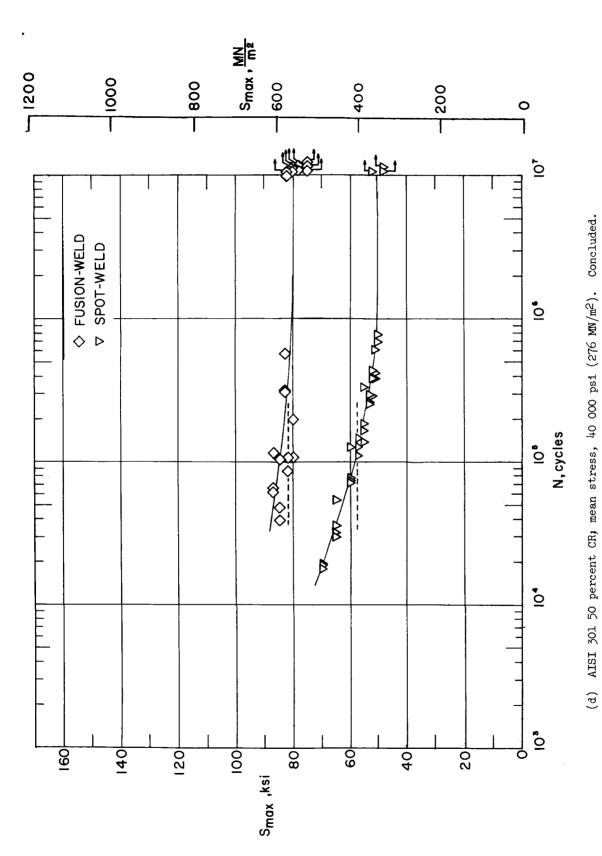



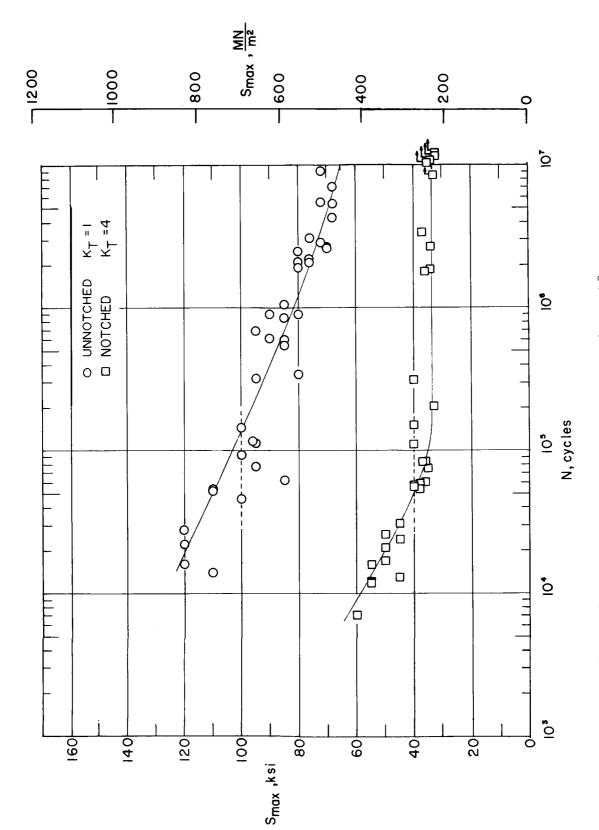

Figure 5.- Results of axial-load tests. Dashed line represents postexposure stress level.

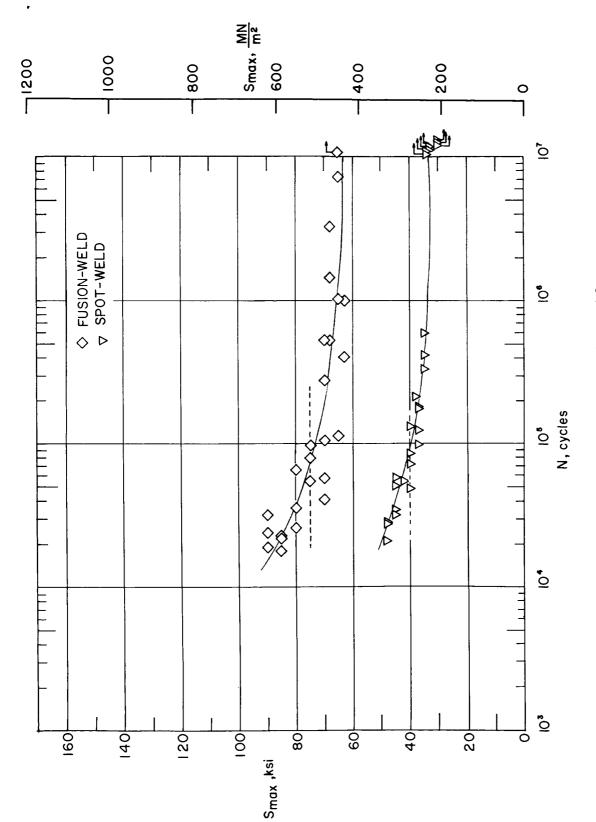

(a) PH 15-7Mo, condition TH 1050; mean stress, 40 000 psi (276 MN/m^2). Concluded.


(b) AM 350 20 percent CRT; mean stress, 40 000 psi (276 $MN/m^2).$

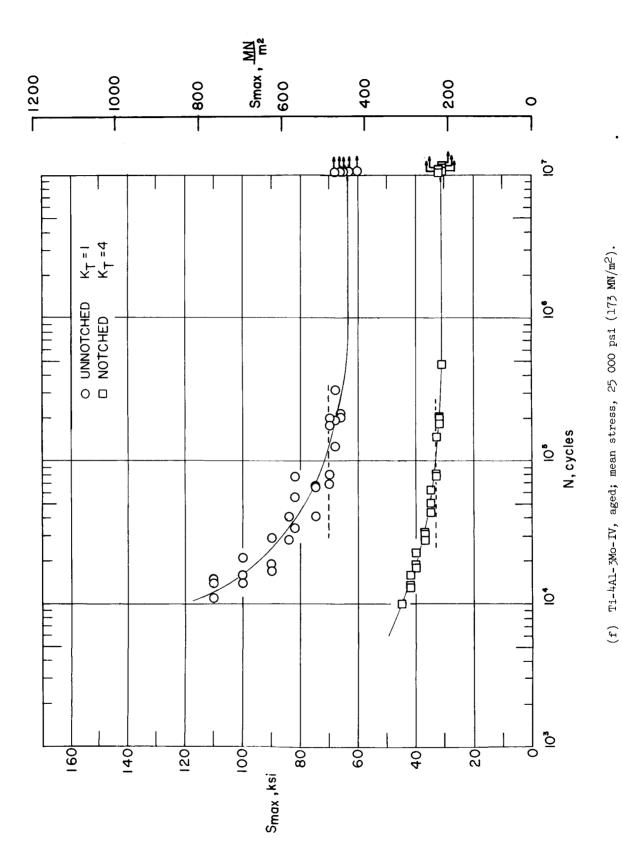

(b) AM 350 20 percent CRT; mean stress, 40 000 psi (276 MN/m^2). Concluded.


(c) AM 550 double aged; mean stress, 40 000 psi (276 $MN/m^2).$

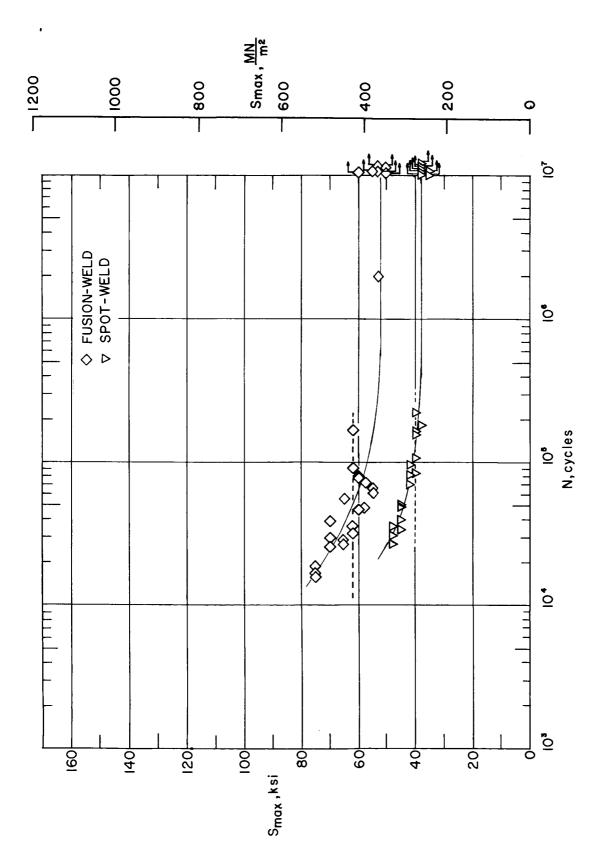

(c) AM 350 double aged; mean stress, 40 000 psi (276 MN/ m^2). Concluded.


(d) AISI 301 50 percent CR; mean stress, 40 000 psi (276 $MN/m^2)\,.$

45

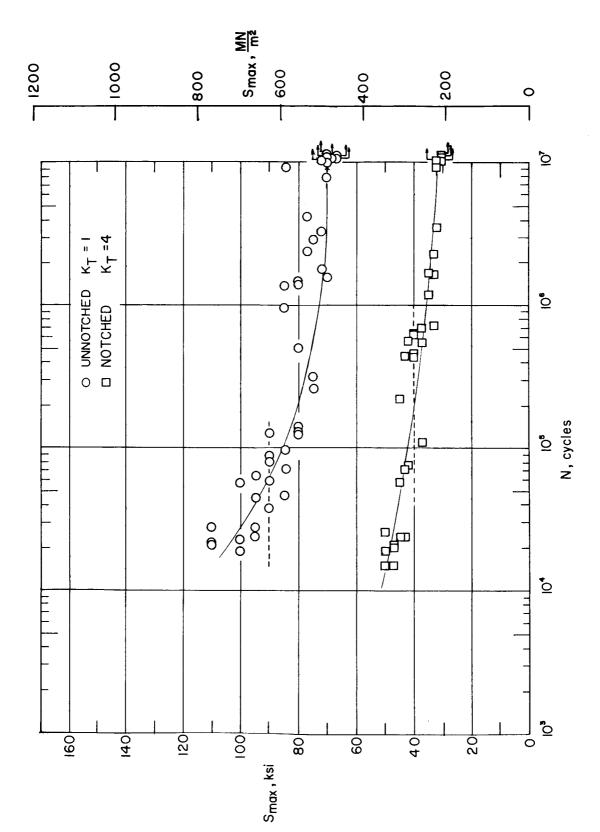


(e) Ti-6Al-4V, annealed; mean stress, 25 000 psi (173 $MN/m^2).$

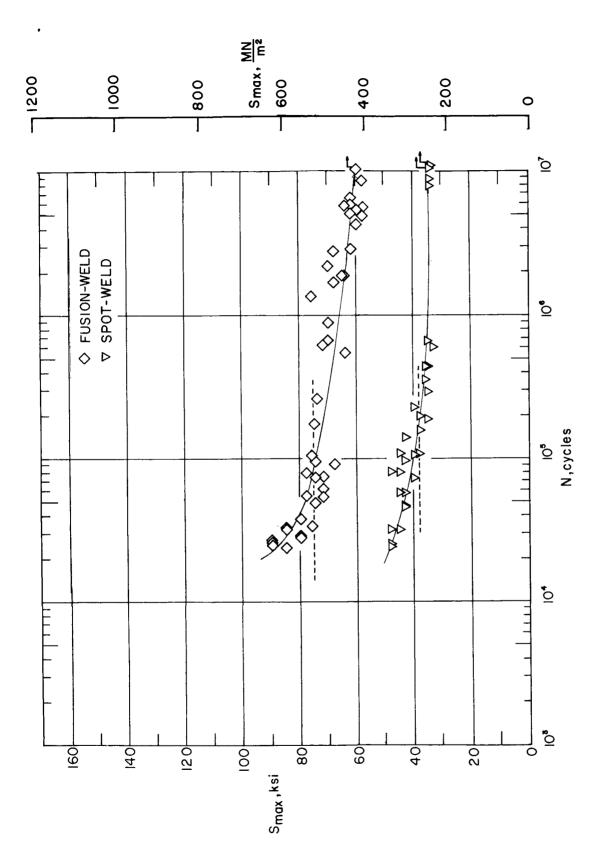


(e) Ti-6Al-4V, annealed; mean stress, 25 000 ps1 (173 MN/m^2). Concluded.

Figure 5.- Continued.

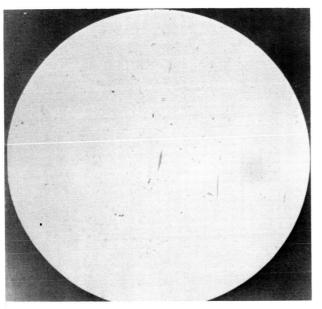


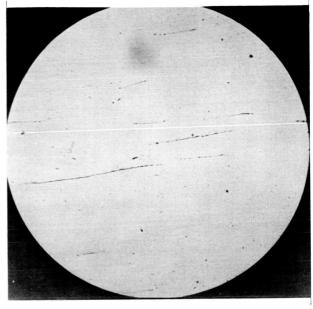
48



(f) Ti-4Al-3Mo-IV, aged; mean stress, 25 000 psi (173 MN/ m^2). Concluded.

49


(g) Ti-8Al-lMo-IV, single annealed; mean stress 25 000 psi (173 MN/m²).



(g) Ti-8Al-lMo-IV, single annealed; mean stress 25 000 psi (173 MM/m^2). Concluded.

Figure 5.- Concluded.

51

TRANSVERSE CROSS SECTION

LONGITUDINAL CROSS SECTION

SURFACE

Figure 6.- Photomicrographs of AISI 301 stainless steel 150x.

L-65-40

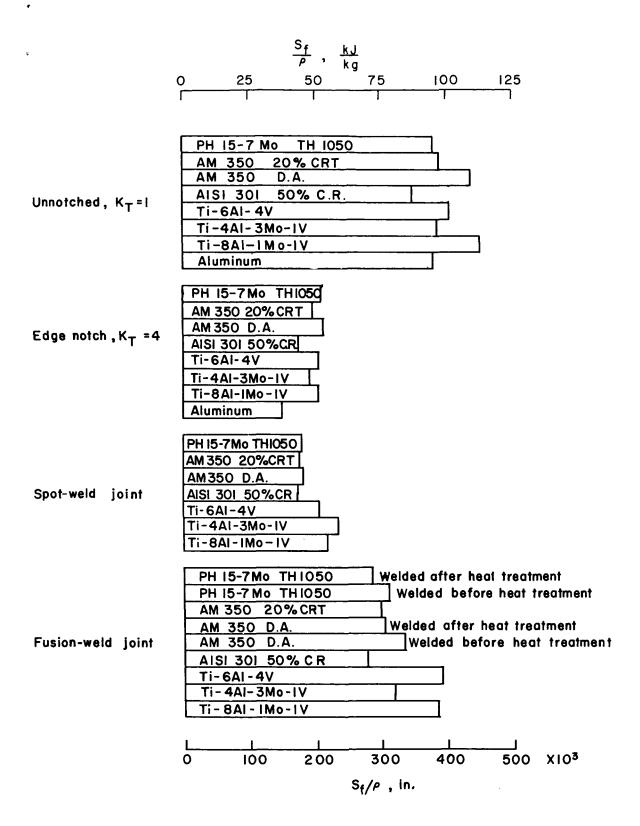
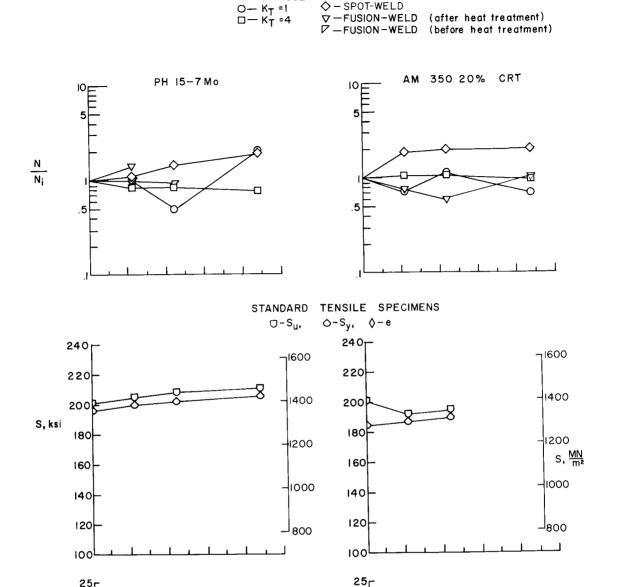



Figure 7.- Comparison of ratios of fatigue limit to density.

FATIGUE SPECIMENS

- SPOT-WELD

(a) PH 15-7Mo and AM 350 20 percent CRT.

10 X103

15

10

0

2

EXPOSURE TIME, hr

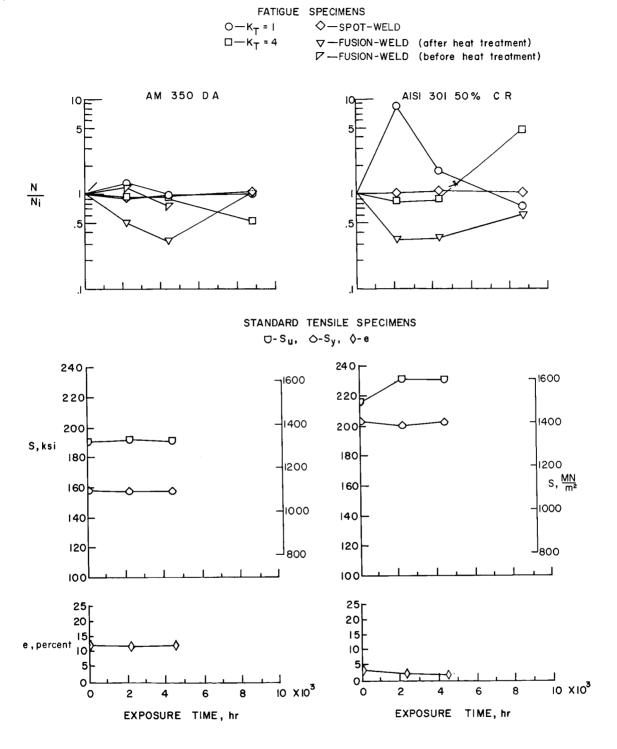
10 X103

Figure 8.- Results of exposure to 5500 F (5610 K) on fatigue limit, static strength, and elongation.

20

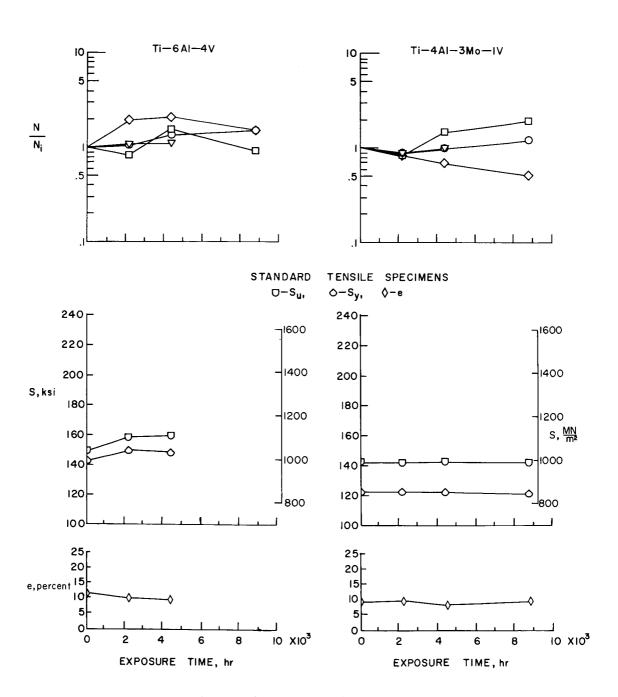
10

0


2

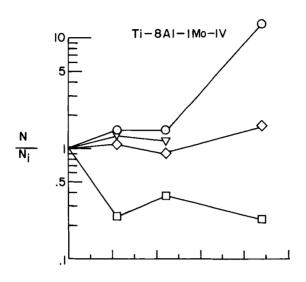
4

EXPOSURE TIME, hr


6

e,percent 15

(b) AM 350 double aged and AISI 301 50 percent CR.


Figure 8.- Continued.

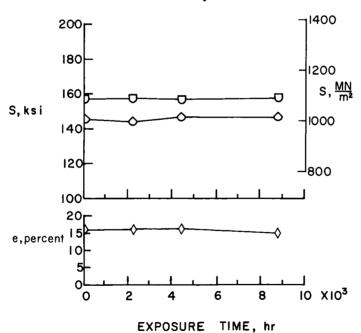

(c) Ti-6Al-4V and Ti-4Al-3Mo-IV.

Figure 8.- Continued.

FATIGUE SPECIMENS $O - K_T = I \qquad \diamondsuit - SPOT-WELD$ $\Box - K_T = 4 \qquad \nabla - FUSION-WELD$

STANDARD TENSILE SPECIMENS $\Box - S_u$, $\Diamond - S_y$, $\Diamond - e$

(d) Ti-8Al-lMo-IV.

Figure 8.- Concluded.